If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X-23=0
a = 1; b = 8; c = -23;
Δ = b2-4ac
Δ = 82-4·1·(-23)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{39}}{2*1}=\frac{-8-2\sqrt{39}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{39}}{2*1}=\frac{-8+2\sqrt{39}}{2} $
| 6x−9=6+x | | X^2-(2x-1)^2=4x^2+36 | | 6a−9=6+a | | X²+y²-2y-8=0 | | 3t+17=2 | | 14.8x-12.9=6.2x-13.8 | | X^2-(2x-1)^2=4x^2-36 | | 2x=-9x-33 | | 7x=18-11 | | 12.25+1.50x=45.00 | | X^2-(2x—1)^2=4x^2-36 | | 2=2(m-8)+5m | | 192÷6x=20 | | 2/3(y-5)=4/5 | | -1x+2=4x-7 | | 3x+12=5x−2 | | 5x-7+2x=4x+14 | | 192/6x=20 | | 5x^2-25x=420 | | 5x^2-25=420 | | 3=11y-8y | | -5b+18=2b+4 | | (2x²+7)(x-1)=0 | | 7x^2-4x=35 | | (x-5)(x+2)=7x | | 5p-30=4p+3 | | -79-7x=26 | | 2x+2=3x-4/7 | | (w-9)+6=4(w-2)-2(w-2) | | -8m+36=6m-6 | | 15a^2+7a-41=0 | | 3(2b+10)-b=3-24+4b |